What do I do now?
The role of the pediatrician in the neurodiagnostic evaluation of children with neurodevelopmental disorders

Dr. Britton Zuccarelli MD
Child Neurologist
Medical Director of the Infant-Child Development Program at Salina Regional Health Center
Clinical Assistant Professor of Pediatrics
University of Kansas School of Medicine

Disclosure

- I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider of commercial services discussed in this CME activity
- I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation

Let’s start with a case

- David is a 3 year 2 month old boy presenting for a well child check-up
- CC: Mom is concerned about speech
- HPI: not really talking, maybe has 5 words, used inconsistently
- PMH: born at term, no complications with pregnancy or delivery, no other health concerns
- TSH: no medications, up to date on immunizations
- EOS: no frequent ear infections
- FH: brother had speech delay
- Social history: parents both work full time; he attends daycare
Case (continued)

- In review of chart:
 - ASQ at 2, 4, 6 months all within normal range across all realms
 - ASQ at 9 months: borderline communication delay; recommended close follow-up
 - ASQ at 12 months: continued borderline communication delay; referred to Parents as Teachers
 (Lost to follow-up when this military family was relocated); no records available; no referrals were made to early intervention services or elsewhere
 - ASQ at 24 months (outside provider): frank delay in realm of communication and personal-social skills, borderline performance in problem-solving skills; record of referral to infant-toddler services made
 (Family moved again)

ASQ = ages and stages questionnaire

Going into the room

Further developmental history:

- Language:
 - Quiet baby, didn’t really coo, babble in infancy
 - First word, “Dada” at 15 months; specific name for items by 18 months
 - Slow word acquisition thereafter
 - By 2 could say “Baba” for cup/milk
 - New caps “Momma,” “Dada,” “Bubba” (for brother), “up,” “no,” “go”
 - Sparse two-word combinations “up, momma” or “no go”
 - Echolalic and palilalic speech “go go go”
 - No speech approximations, no stuttering
 - Hearing has been tested and is within normal range
Developmental history, continued

- Language (continued):
 - Doesn’t make very good eye contact
 - Doesn’t really point, really drag Mom to items of need/hot help
 - Doesn’t really follow gestures or understand body language
 - Paucity of facial expressions

- Social:
 - Plays off by himself at daycare
 - Doesn’t know the names of any of the kids in his class
 - No pretend play alone or alongside/with peers
 - Likes to build with blocks; gets very upset if others disrupt him
 - Doesn’t really smile much

Developmental history (continued)

- Gross motor:
 - Rolled 4 months
 - Sat 6 months
 - Crawled 9 months
 - Walked 11 months
 - Runs well, goes up and down stairs, rides a tricycle, can kick and throw a ball overhead

- Fine motor:
 - Can pick up small foods/feed self
 - Helps dress self
 - Can scribble
 - Cannot use scissors, does not like to string beads
 - Loves to stack blocks

Mother’s further concerns

- He often rocks while he’s watching TV
- He really only watches the same shows over and over
- He is bothered by the blender, automatic toilets
- He is a picky eater
Physical examination

- General: awake, in acute distress, crying
- HEENT: macrocephalic
- Heart: well-perfused
- Lungs: non-labored respirations
- Abdomen: nondistended
- GU: deferred
- Derm: one hyperpigmented macule on the left distal forearm
- Psych: poor eye contact, minimally interactive
- Extremities: no obvious deformities
- Lymph: no overt lymphadenopathy

Neurological examination:

- Mental status: awake, alert but minimally interactive with examiner, largely uncooperative with examination, no speech sound except for “Mama, mama” repeatedly
- Cranial nerves: red reflex bilaterally, PERRL, EOM, no ptosis, no nystagmus, normal facial symmetry, no fixed head tilt, tongue midline
- Motor: mild hypotonia throughout; frequent motor stereotypies observed
- Sensation: intact to light touch throughout as assessed by withdrawal
- Reflexes: unable to assess secondary to cooperativity
- Coordination: no obvious tremor or dysmetria
- Gait: normal straightaway toddler gait with good balance; walks on toes

Assessment

- 3 year 2 month old term toddler boy with macrocephaly and global developmental delay in the setting of a family history of speech delay
Differential diagnosis?

- Genetic
 - Fragile X, PTEN, NF1?
- Metabolic
 - Aminoacidopathies, organic acidurias, fatty acid oxidation disorders, etc.
- Structural
 - Septooptic dysplasia, lissencephaly

What does the pediatrician do?
Outline

- Why is this important?
- Define terms: global developmental delays vs intellectual disability
- How to identify delays in development
- What work-up can/should be started before a referral to a specialist?
- Interventions

Background

- Approximately 17% of children between the ages of 3-17 in the US have a neurodevelopmental disability
 - Most have a diagnosis captured by the DSM-V
 - Others include cerebral palsy, epilepsy, neuropsychiatric disorders
- Characterized by developmental deficits in either cognition, language, behavior, and/or motor skills that affect personal, social, academic and/or occupational functioning
- Present and are typically diagnosed in infancy and early childhood
- Non-progressive
- Comprehensive developmental care should include not only evidence-based treatments and supports but also a search for an underlying etiology

Background (continued)

- Population health concerns
 - Treatment for neurodevelopmental disorders is complex
 - Outcomes in education, employment, social participation, criminal activities
 - Caregiver emotional and financial burden
 - Conditions are not often life-limiting

DSM-V: Diagnostic and Statistical Manual of Mental Disorders, 5th Edition
Background (continued)

- Early intervention is paramount
 - The underlying neural mechanisms for most of these disorders begin in utero or, generally, within the first weeks or months of life
 - Environment + experience may modify brain development

- Pediatricians may lack confidence in evaluating and managing neurodevelopmental disorders
- Provider ratio data from 2000: 20% deficit below demand for child neurology services
- Residents graduate feeling unprepared, uncomfortable, dependent on subspecialists, uneducated but motivated to learn

Definitions

- Developmental delay: failure to gain the skills expected of a child of the same age; generally refers to a single realm of development
 - Communication disorders
 - Mixed receptive-expressive language disorder
 - Speech apraxia
 - Speech sound disorder
 - Childhood apraxia of speech
 - Social pragmatic communication disorder
 - Motor disorders
 - Developmental coordination disorder
 - Stereotypic movement disorder
Definitions (continued)

- Global developmental delay: failure to gain the skills expected of a child of the same age across multiple realms of development
- Generally used before age 5-6 years of age, when intellectual testing is less reliable
- Intellectual disability: limitation in both intellectual functioning and adaptive behavior
- Specific learning disability: persistent impairment in at least one major area (reading, written expression, math)
 - Dyslexia, dysgraphia, dyscalculia

Definitions (continued)

- Neurodevelopmental disorders represent a spectrum that could include:
 - Attention-Deficit/Hyperactivity Disorder
 - Autism Spectrum Disorder
 - Neurological signs (hypotonia, spasticity, weakness, etc.) and/or symptoms (fatigue)
 - Other psychiatric conditions

How to identify delays

- Ages and Stages Questionnaire®
- Parents’ Evaluation of Developmental Status
- Modified Checklist for Autism in Toddlers
- Communication and Symbolic Behavior Scales
- Screening Tool for Autism in Toddlers and Young Children
Neurodiagnostic evaluation

- In 2014 the AAP released an updated guideline for the comprehensive evaluation for children with intellectual disability or global developmental delays.
- Appropriate evaluation for genetic etiologies, inborn errors of metabolism, and the role of imaging in this context.
- Benefits: clarify etiology, prognostication, recurrence risk, refined treatment, avoidance of redundant/unnecessary tests, surveillance for known complications, family support, research, multidisciplinary care coordinated by the medical home.

Chromosomal microarray

- Now considered the first-tier diagnostic test in all children with GDD/ID.
- Replaced G-banded karyotyping and FISH.
- Gold standard.
- Higher resolution genomic imbalances:
 - Gains: duplications
 - Losses: deletions
 - Rearrangements.
- Diagnostic rate is at least twice that of karyotyping at approximately 12%.
- Other names: array-based genomic copy number analysis, comparative genomic hybridization, single nucleotide polymorphism arrays.
Chromosomal microarray (continued)

- Possible results:
 - Pathogenic or likely pathogenic
 - Benign or likely benign
 - Variant of uncertain significance
 - Incomplete vs variable penetrance
 - Coverage
 - The role of the genetic counselor
 - Higher level testing is generally deferred to the specialist

Inborn errors of metabolism

- 1-5% of children with ID have an underlying metabolic disorder
 - Some are not included in the newborn screening blood spot panels
 - Potential for improved outcomes after diagnosis and treatment is high
 - Screening tests:
 - Blood: amino acids, acylcarnitine profile
 - Urine: organic acids
 - Others: homocysteine, creatine metabolites, purines and pyrimidines, mucopolysaccharides, oligosaccharides
 - Cost is relatively low

Diagnostic imaging

- There is no consensus on the role of neuroimaging neither by MRI nor CT
- Recommendation: to consider in children with abnormal clinical examinations
 - Macro or microcephaly, focal findings, history of seizures
 - CT: low diagnostic yield, exposure to radiation, often still need sedation
 - MRI: more sensitive, more expensive, often need sedation
 - Abnormal findings are found in ~30% of all children with DD/ID but often these are nonspecific/nonsyndromic
Recommendations:

- Chromosomal microarray should be performed in all
- Specific metabolic testing should be considered
- Fragile X testing should be performed in all
- Further testing could be considered based on gender:
 - XLID panel for boys if X-lineage is suggested by family history
 - MECP2 deletion/duplication/sequencing studies for girls
- If macro- or microcephaly or focal findings are present, consider neuroimaging
- If all are unremarkable consider referral to other specialists
- Make a plan for reevaluation

Summary

- Neurodevelopmental disorders are common
- Early intervention is paramount to ensure optimal outcomes
- Pediatricians are responsible for recognizing developmental delays
- At least cursory genetic and perhaps metabolic testing, with or without neuroimaging, can be initiated by the pediatrician
- Specialists can partner in further neurodiagnostic evaluation
Thank you!

Questions?

References
3. https://pubmed.ncbi.nlm.nih.gov/27027609/#:~:text=Early%20identification%20of%20infants%20at,weeks%20or%20months%20of%20life
7. https://pubmed.ncbi.nlm.nih.gov/pmc/articles/PMC5701958/