Update on Kawasaki Disease Cardiovascular Complications

KAAP Progress in Pediatrics Spring 2019

Anitha Parthiban MD, FAAP, FACC, FASE
Director, Pediatric Echocardiography
Associate Professor
Ward Family Heart Center
Children's Mercy Kansas City

@ The Children's Mercy Hospital 2014 03/14

Disclosures

- I have no relevant financial relationships with the manufacturers(s) of any commercial products(s) and/or provider of commercial services discussed in this CME activity
- I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation

Ward Family Heart Center
CHILDREN'S MERCY KANSAS CITY

2

Outline

- Review the cardiac findings, acute and long term cardiovascular complications of Kawasaki disease (KD)
- Treatment of acute manifestations
- Long term follow up and surveillance
- Highlight recommendations in the new AHA guidelines

Ward Family Heart Center

3

© The Children's Mercy Hospital 2014 03/14

Guideline

American Heart Association Scientific Statement Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease. *Circulation* 2017; 135:e927-e999

KD and **CVD**

- KD is the most common cause of acquired heart disease in children in developed countries
- Untreated- coronary aneurysms occur in 25%, \sim 4% with timely initiation of IVIG treatment
- Mortality occurs from coronary thromboses and myocardial ischemia - peak mortality occurs between 15-45 days after onset of fever
- Hospital mortality ~0.17%, mortality > in children > 10 yr (1.4% vs 0.11%)

Chang RK. Hospitalizations for Kawasaki disease among children in the United States, 1988-1997. Pediatrics. 2002;109:e87.

© The Children's Mercy Hospital, 2014. 03/14

KD and **CVD**

 SMR beyond acute illness elevated for all patients with cardiac sequelae (SMR, 1.86; 95% confidence interval, 1.02-3.13)

Nakamura Y. Mortality among Japanese with a history of Kawasaki disease: results at the end of 2009. J Epidemiol. 2013

- Sudden death /MI can occur from missed KD
- 5% of adults with MI < 40 yr had lesions of KD

Daniels LB. Prevalence of Kawasaki disease in young adults with suspected myocardial ischemia. Circulation. 2012

Cardiac Involvement in KD

- Myocardial inflammation ~ 50-70% patients
- Myocarditis occurs early and is transient
- ~25% have mitral regurgitation (mild-moderate)
- Aortic regurgitation is rare ~ 1%, may be related to aortic dilation
- Aortic root dilation ~ 10%
- Other arterial abnormalities aneuryms/ thrombosis/ rupture- axillary, subclavian, brachial, femoral A.
- Peripheral gangrene

Coronaries in KD

- Range from dilation to giant aneurysms
- Proximal coronary segments
- Transient dilation (Z score < 2.5) most common, resolves in 4-8 weeks
- 30-50% patients dimensions in normal range but decrease with follow up
- Giant /large aneurysms asymptomatic unless causing ischemia – difficult recognition in infants, rarely rupture causing tamponade

© The Children's Mercy Hospital, 2014. 03/14

Clinical findings

- Tachycardia
- Hyperdynamic precordium
- Murmur- systolic ejection murmur, mitral regurgitation , aortic regurgitation
 25% incidence of valvulitis (mitral valve)
- Gallop myocardial inflammation and edema
- Pericardial rub- pericarditis
- 5% cardiovascular collapse (KD shock syndrome)

Electrocardiogram

- Prolonged PR
- ST- T wave changes
- Low voltage complexes (myocarditis)
- Ischemia
- Malignant arrhythmia

© The Children's Mercy Hospital, 2014. 03/14

Echocardiography

- Mainstay of cardiac imaging in KD
- Soon after diagnosis, but treatment should not be delayed
- Consider sedation (< 3yrs, irritable child)
- If initial quality poor, repeat sedated echo in 48 hrs
- Initial echo in first week of illness- normal
- Guideline specifies standards of imaging including equipment and imaging protocol

Classification of Coronary Anomalies

Based on Z scores, not absolute dimensions

Z-Score Classification

- 1. No involvement: Always <2
- 2. Dilation only: 2 to <2.5; or if initially <2, a decrease in Z score during follow-up ≥1
- 3. Small aneurysm: ≥2.5 to <5
- 4. Medium aneurysm: ≥5 to <10, and absolute

dimension <8 mm

5. Large or giant aneurysm: ≥10, or absolute

dimension ≥8 mm

© The Children's Mercy Hospital, 2014. 03/14

When to echo?

- At diagnosis
- Uncomplicated patients 1-2 weeks, 4-6 weeks
- Evolving coronary artery abnormalities (Z score >2.5)- 2/week till progression stops
- Large or giant aneurysms- 2/week during expansion, 1/week in the first 45 days of illness, and then 1/month for 3 months

Limitations of Echo

- Difficult to detect thrombosis and stenosis
- Body size, acoustic windows
- Calcification can affect visualization
- Distal segments difficult to visualize
- CT angiography, CMR, invasive angiography

© The Children's Mercy Hospital, 2014. 03/14

Acute Management

- Prevention and treatment of thrombosis
- Adjustment of anti-thrombotic therapy for evolving aneurysms
- Influenza vaccine to patients > 6 months/ family members
- Varicella vaccine consider alternate antiplatelet agent for 6 weeks

Thrombosis Prevention

- Low dose aspirin (ASA) 3-5 mg/kg/day for
 4-6 weeks after onset of illness
- Rapidly expanding or giant aneurysms (Z score> 10) add warfarin /LMWH for systemic anticoagulation
- Risk for thrombosis (aneurysms > 8mm, > 10 Z score, history of thrombosis) triple therapy
- Ibuprofen and other NSAID's should be avoided

Thrombosis Treatment

- Thrombolytic therapy tPA
- Mechanical restoration of lumen at cardiac catheterization
- Monitor for bleeding
- Low dose thrombolytic + glycoprotein IIb/IIIa inhibitor(abciximab) for large thrombus burden

Long term outcomes

- Coronary artery events (thrombosis, stenosis, intervention, MI, death) linked to severity of initial coronary disease and progression
- 16 year follow up

Z score <10 and dimension <8 mm: 1%

Z score ≥10 but absolute dimension <8 mm : 29%

Z score \geq 10 and an absolute dimension \geq 8 mm: 48%

Giant aneurysms unlikely to regress

Risk Stratification

Classification	Description			
1	No involvement at any timepoint (Z score always <2)			
2	Dilation only (Z score 2 to <2.5)			
3	Small aneurysm (Z score ≥2.5 to <5)			
3.1	Current or persistent			
3.2	Decreased to dilation only or normal luminal dimension			
4	Medium aneurysm (Z score ≥5 to <10, and absolute dimension <8 mm)			
4.1	Current or persistent			
4.2	Decreased to small aneurysm			
4.3	Decreased to dilation only or normal luminal dimension			
5	Large and giant aneurysm (Z score ≥10, or absolute dimension ≥8 mm)			
5.1	Current or persistent			
5.2	Decreased to medium aneurysm			
5.3	Decreased to small aneurysm			
5.4	Decreased to dilation only or normal luminal dimension			

Long term management

- Begins 4-6 weeks post onset
- Preventing thrombosis and myocardial ischemia
- Surveillance for coronary disease and inducible ischemia
- Promotion of optimal cardiovascular health – life style modification, prevention of risk factors for atherosclerosis

Primary Provider Role

- ***** Who should follow up with cardiologist?
- Level 1- discharge after 4 weeks 12mo
- Level 2- discharge after 12 mo, 3-5 yrs if dilation persists
- Level 3-5 cardiology follow up needed

Primary Provider Role

- Cardiovascular risk factor assessment and counseling
- Provide general counseling regarding healthy lifestyle and activity promotion at every visit
- Assess BP, BMI, waist circumference, dietary counseling, smoking cessation, lipid profile per guidelines

Primary Provider Role

- **Reproductive counseling**
- Risk level 1,2- routine age appropriate counseling
- Patients with aneurysms
- Avoid contraception with risk of thrombosis
- Multi-disciplinary team for pregnancy
- Change in thromboprophylaxis therapy during pregnancy

Long term management

- *****Activity Restrictions?
- Risk level 1-3 no restrictions
- Risk level 4-5
- Self restriction
- High intensity activity or competitive sports guided by cardiac testing
- No contact sports if on dual antiplatelet therapy / anticoagulation

Medications							
Risk Level	Low-Dose ASA	Anticoagulation (Warfarin or LMWH)	Dual Antiplatelet Therapy (ASA+Clopidogrel)	β-Blocker	Statin		
1: No involvement	6–8 wk then discontinue	Not indicated	Not indicated	Not indicated	Not indicated		
2: Dilation only	Continuation after 6–8 wk is reasonable	Not indicated	Not indicated	Not indicated	Not indicated		
3.1: Small aneurysm, current or persistent	Continue	May be considered	May be considered as an alternative to anticoagulation	Not indicated	Empirical therapy may be considered		
3.2: Small aneurysm, regressed to normal or dilation only	Continue, but discontinuation may also be considered	Not indicated	Not indicated	Not indicated	Empirical therapy may be considered		
4.1: Medium aneurysm, current or persistent	Continue	May be considered	May be considered as an alternative to anticoagulation	Not indicated	Empirical therapy may be considered		
4.2: Medium aneurysm, regressed to small aneurysm	Continue	Not indicated	May be considered	Not indicated	Empirical therapy may be considered		
4.3: Medium aneurysm, regressed to normal or dilation only	Continue	Not indicated	May be considered	Not indicated	Empirical therapy may be considered		
5.1: Large and giant aneurysm, current or persistent	Continue	Reasonably indicated	May be considered in addition to anticoagulation	May be considered	Empirical therapy may be considered		
5.2: Large or giant aneurysm, regressed to medium aneurysm	Continue	Reasonably indicated	May be considered as an alternative to anticoagulation	May be considered	Empirical therapy may be considered		
5.3: Large or giant aneurysm, regressed to small aneurysm	Continue	May be considered	May be considered as an alternative to anticoagulation	May be considered	Empirical therapy may be considered		
5.4: Large or giant aneurysm, regressed to normal or dilation only	Continue	Not indicated	May be considered as an alternative to anticoagulation	Not indicated	Empirical therapy may be considered		

Summary

- KD is the leading cause of acquired heart disease in developed nations
- Significant mortality and morbidity if not recognized and treated early
- Long term surveillance and management of coronary stenosis and ischemia is critical
- Cardiovascular risk assessment and lifestyle counseling is integral to the management

Ward Family Heart Center
CHILDREN'S MERCY KANSAS CITY

27

