Please complete the preassessment located in your handout before the program begins.

Faculty and Disclosures

Faculty Presenter:

Alfin G. Vicencio, MD
Vice Chair for Clinical Affairs and Strategy
Department of Pediatrics
Chief, Division of Pediatric Pulmonology
Kravis Children’s Hospital
Icahn School of Medicine at Mount Sinai
New York, NY

Dr Vicencio has no relevant financial relationships with any commercial interests to disclose.
Sponsorship and Support

This educational activity is jointly provided by the American Academy of CME, Spire Learning, and The Kansas Chapter, American Academy of Pediatrics.

This activity is supported by an independent educational grant from Boehringer Ingelheim Pharmaceuticals, Inc.

Off-Label Statement and Disclaimer

This educational activity may contain discussion of published and/or investigational uses of therapies that are not indicated by the FDA. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings. Further, participants are encouraged to consult appropriate resources for any product or device mentioned in this program.

The opinions expressed in this educational activity are those of the faculty and do not represent those of the Academy, Spire Learning, or The Kansas Chapter, American Academy of Pediatrics. This activity is intended as a supplement to existing knowledge, published information, and practice guidelines. Learners should appraise the information presented critically and draw conclusions only after careful consideration of all available scientific information.
Photo Acknowledgement

Radiologic images are courtesy of Holger Link, MD, MRCP, and have been included with permission.

Learning Objectives

Upon completion of this activity, learners should be better able to:

• Differentiate between mild to moderate asthma and severe asthma
• Recognize the characteristics of difficult-to-control severe asthma vs treatment-refractory severe asthma and when to refer to a specialist
• Individualize maintenance strategies for patients with pediatric asthma based on current guidelines and disease severity
Asthma Epidemiology

• Most common chronic lung disease of childhood
• Approximately 6,000,000 children in the US¹
• 2013: children with asthma ages 5 to 17 missed 13.8 million days of school per year (2.6 days/child)²
• 2016: half of all children with asthma had at least one asthma attack²

Imagine That…

• You are 8 years old
• You feel a weight on your chest every day – like someone wrapped it tight with duct tape
• Every breath takes an effort
• Your lungs are filled with rubber-cement–like mucus that is nearly impossible to clear out of your airways
• You wake up every night, gasping for air
• Your parents worry that you might not live to become an adult
Mild and Moderate Asthma

Option A (GINA): Retrospective assessment of level of treatment required to control symptoms and exacerbations

- **Mild asthma**
 - Well-controlled with PRN albuterol or low-dose inhaled corticosteroid
- **Moderate asthma**
 - Well-controlled with low-dose ICS/LABA

GINA, Global Initiative for Asthma; ICS, inhaled corticosteroid; LABA, long-acting beta-agonist.

Mild and Moderate Asthma (cont’d)

Option B (NHLBI): Classification of severity at initial visit. Subsequent visits focus on control.

- **Mild asthma**
 - Impairments:
 - Symptoms: > 2 days/week (not daily)
 - Albuterol: > 2 days/week (not daily)
 - Nighttime awakenings: 3-4 times/month
 - Lung function: FEV1% predicted > 80%
 - Risk:
 - > 2 exacerbations/year requiring oral steroids
- **Moderate asthma**
 - Impairments:
 - Symptoms: daily
 - Albuterol: daily
 - Nighttime awakenings: > 1 occurrence/week but not nightly
 - Lung function: FEV1% predicted 60%-80%
 - Risk:
 - > 2 exacerbations/year requiring oral steroids

FEV1, forced expiratory volume in one second.

What Is Severe Asthma?

- **GINA classification**
 - Steps 4-5 (high-dose ICS + LABA or leukotriene modifier) to achieve control
- **Systemic corticosteroids ≥ 50% of previous year to achieve control**
- **Remains uncontrolled despite aggressive therapy**

Uncontrolled Asthma in Children ≥ 6 Years

- **Poor symptom control**
 - ACQ score > 1.5
 - ACT score < 20
- **Frequent, severe exacerbations**
 - 2 or more burst systemic steroids in the previous year
 - Serious exacerbations requiring:
 - At least one hospitalization or PICU stay
 - Mechanical ventilation in the previous year
- **Airflow limitation**
 - FEV1 < 80% after bronchodilator

ACQ, Asthma Control Questionnaire; ACT, Asthma Control Test; PICU, pediatric intensive care unit.
Key Questions

• Is the patient taking the medication?
• Is the patient using the medication correctly?
• Is the patient on the correct medication?
• Have all triggers been identified and removed?
• Is it really asthma?

Strengths

- Guidelines
- Improved outcomes
- Research
- New drug therapies

Opportunities

- Environmental control
- Evaluation tools
- School nurses
- Consistent follow-up

Breathing Well

Weaknesses

- Incurable disease
- Adherence
- Triggers
- Inhaler technique
- Guideline implementation

Threats

- Missed diagnosis
- Side-effect concerns
- Respiratory viruses
- Medication cost
- Inconsistent follow-up
Current Asthma Guidelines

- National Heart, Lung, and Blood Institute (NHLBI)
 - Updated August 2007
 - Medication update 2011

- GINA
 - Updated 2017
The Control-Based Asthma Management Cycle

Diagnosis
Symptom control & risk factors (including lung function)
Inhaler technique & adherence
Patient preference

Asthma medications
Non-pharmacological strategies
Treat modifiable risk factors

Stepwise Management of Asthma

GINA Assessment of Asthma Control

A. Symptom control

- **In the past 4 weeks, has the patient had:**
 - Daytime asthma symptoms more than twice a week? **Yes** / **No**
 - Any night waking due to asthma? **Yes** / **No**
 - Reliever needed for symptoms* more than twice a week? **Yes** / **No**
 - Any activity limitation due to asthma? **Yes** / **No**

<table>
<thead>
<tr>
<th>Level of asthma symptom control</th>
<th>Well-controlled</th>
<th>Partially controlled</th>
<th>Uncontrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>None of these</td>
<td>1-2 of these</td>
<td>3-4 of these</td>
<td></td>
</tr>
</tbody>
</table>

B. Risk factors for poor asthma outcomes

- Assess risk factors at diagnosis and periodically
- Measure FEV₁, at start of treatment, after 3 to 6 months of treatment to record patient's personal best, then periodically for ongoing risk assessment

Assess patient's risks for:
- Exacerbations
- Fixed airflow limitation
- Medication side-effects

Decline in Asthma Attacks, 2001-2016

National Health Interview Survey for children aged 0 to 17 years

Improved Outcomes in Severe Asthma

<table>
<thead>
<tr>
<th></th>
<th>1993-1997* (n=65)</th>
<th>2003-2007* (n=164)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic oral steroids</td>
<td>51%</td>
<td>28%</td>
</tr>
<tr>
<td>FEV1%</td>
<td>76%</td>
<td>84%</td>
</tr>
<tr>
<td>Albuterol inhalations/week</td>
<td>71</td>
<td>33</td>
</tr>
<tr>
<td>Leukotriene antagonist</td>
<td>0</td>
<td>76%</td>
</tr>
<tr>
<td>Combination LABA/ 2nd generation inhaled steroid</td>
<td>0</td>
<td>66%</td>
</tr>
</tbody>
</table>

*Comparison of two pediatric cohorts evaluated at National Jewish Health.

Diminishing Returns With High-Dose Inhaled Steroid

Combined ICS + LABA

- Improved lung function
- Less albuterol use compared with same ICS dose
- Compared with higher ICS dose
 - 1.2 cm more in growth over one year
 - No difference in control of asthma symptoms
- No difference in number of exacerbations requiring oral steroids
- No increase in serious side effects

Anticholinergics

<table>
<thead>
<tr>
<th>Indication</th>
<th>Mechanism</th>
<th>Age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropium</td>
<td>Moderate to severe disease</td>
<td>≥ 6 years</td>
<td>Increased FEV1 in children with moderate asthma</td>
</tr>
<tr>
<td></td>
<td>Binds to muscarinic receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronchodilator effect</td>
<td></td>
<td>No significant change in FEV1 in 12- to 17-year-old children with severe</td>
</tr>
<tr>
<td></td>
<td>Long-acting (once-daily dosing)</td>
<td></td>
<td>asthma on ICS + at least one additional controller</td>
</tr>
</tbody>
</table>

Potential side effects: paradoxical bronchospasm, pharyngitis, sinusitis, bronchitis, and headache

Precision Medicine

Biologic Targeting IgE

<table>
<thead>
<tr>
<th>Indication</th>
<th>Mechanism</th>
<th>Age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omalizumab</td>
<td>Binds to free IgE Fc receptor</td>
<td>≥ 6 years</td>
<td>Decreases:</td>
</tr>
<tr>
<td>Moderate to severe</td>
<td></td>
<td></td>
<td>• Exacerbations</td>
</tr>
<tr>
<td>disease +</td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td>Sensitization to</td>
<td></td>
<td></td>
<td>• ICS dose</td>
</tr>
<tr>
<td>perennial allergen</td>
<td></td>
<td></td>
<td>• Seasonal asthma</td>
</tr>
</tbody>
</table>

Potential side effects: injection-site reactions, respiratory infections

Fc, fragment crystallizable; IgE, immunoglobulin E; QOL, quality of life.

Biologic Targeting Eosinophils

<table>
<thead>
<tr>
<th>Indication</th>
<th>Mechanism</th>
<th>Age</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benralizumab¹</td>
<td>Anti-IL-5</td>
<td>≥ 12 years</td>
<td>Decreases: Exacerbations, Symptoms, OCS dose</td>
</tr>
<tr>
<td>Severe eosinophilic asthma</td>
<td>• Binds to IL-5Rα receptor and Fcγ receptor NK cells</td>
<td></td>
<td>Increases: FEV1</td>
</tr>
<tr>
<td>Mepolizumab²,³</td>
<td>Anti-IL-5</td>
<td>≥ 12 years</td>
<td>Decreases: Exacerbations, Symptoms, OCS dose</td>
</tr>
<tr>
<td>Severe eosinophilic asthma</td>
<td>• Blocks IL-5 binding to eosinophils</td>
<td></td>
<td>Increases: FEV1</td>
</tr>
</tbody>
</table>

Potential side effects: common cold symptoms, headaches, fever, upper abdominal pain, pharyngitis, ear discomfort, intestinal infection causing abdominal pain, nausea and vomiting, and nosebleeds

IL, interleukin; OCS, oral corticosteroid.
No Curative Treatments

Parents and children move through gradual process from knowledge to acceptance at own pace

Chronic Airway Remodeling

BM, basement membrane; BV, blood vessel; EP, epithelium; SM, smooth muscle.
Adherence

- 4-year study – Childhood Asthma Management Program (CAMP)
- Measurements
 - Subjective: diary cards
 - Objective: dose counter inhaler

Objective Adherence Much Lower Than Self-Reported Adherence

Inhaler Technique

- Prevalence of correct technique only 31%¹
- Appropriate age for inhaler devices²

<table>
<thead>
<tr>
<th>Age</th>
<th>Device</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 years</td>
<td>MDI: spacer + mask</td>
<td>Nebulizer if intolerant MDI</td>
</tr>
<tr>
<td>> 3 years</td>
<td>MDI: spacer + mask</td>
<td>Consider mouthpiece</td>
</tr>
<tr>
<td>> 5-6 years</td>
<td>Dry powder</td>
<td>Evaluate patient for readiness</td>
</tr>
</tbody>
</table>

Clinical Pearl: Include reminder in written asthma plan to bring medications and spacer to each visit

MDI, metered-dose inhaler.
Evaluation Tools

- History
 - Important tool
 - Reflects patient’s experience of disease and impact on QOL

- Spirometry
 - Supports diagnosis
 - Important in assessing response to changes in therapy and exacerbations

- Positive test for airway reactivity:
 - Post-bronchodilator FEV1% change > 12% or 200 mL
 - > 8% likely significant in children

Typical Spirometric Tracings

Asthma Control Questionnaires

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Recall Window</th>
<th>Number of Questions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACK</td>
<td>0-5 years</td>
<td>1-12 months</td>
<td>5</td>
<td>Includes number of oral steroid courses</td>
</tr>
<tr>
<td>C-ACT</td>
<td>4-11 years</td>
<td>4 weeks</td>
<td>4 by child</td>
<td>Children report lower control</td>
</tr>
<tr>
<td>CASI</td>
<td>> 6 years</td>
<td>2 weeks</td>
<td>5</td>
<td>Includes: FEV1% Medication level Number of exacerbations</td>
</tr>
<tr>
<td>ACQ</td>
<td>> 12 years</td>
<td>1 week</td>
<td>6 + FEV1%</td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td>> 12 years</td>
<td>4 weeks</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

C-ACT, Childhood Asthma Control Test; CASI, Composite Asthma Severity Index; TRACK, Test for Respiratory and Asthma Control in Kids.

HEPA Air Filters Might Reduce Some Triggers

Indoor Triggers

Preventing Severe Asthma Exacerbations

- Kids screened for dust mite sensitivity after asthma attacks in ER
- 284 sensitized kids randomized
- Outcome: Asthma attacks over 12 months
 - ER visits, hospitalization, or oral steroids

ER, emergency room
Dust Mite-Proof Bedding

45% Lower Risk of ER Visits

Fewer Severe Exacerbations

Hospital Attendance With Asthma Exacerbation

Randomization

Percentage

Active Placebo

29.3 41.5

P = .047

Decreasing Pet Allergens

- Takes 20 to 24 weeks to reduce cat allergen after removing the animal from home

- Washing pets not effective in decreasing allergens
 - Cats – washing benefits not sustained beyond 1 week
 - Dogs – benefits only sustained if dog washed twice a week

Hypoallergenic Dogs

No difference in airborne antigen between hypoallergenic and regular breeds

Humidifiers

- South Korea: cluster of severe lung disease due to humidifier disinfectant
- No evidence for benefit in asthma
- Can promote mold growth

School-Based Administration of ICSs

- 48 urban students on Medicaid (grades K-8)
- Randomized controlled trial
- 60-day treatment period
- Intervention group
 - 92% received morning ICS at school
 - Decrease in asthma symptoms
 - More sleep
- Despite improvements in intervention group, parents in control group reported same number of ICS treatments, suggesting parental over-reporting

Strengths
- Guidelines
- Improved outcomes
- Research
- New drug therapies

Opportunities
- Environmental control
- Evaluation tools
- School nurses
- Consistent follow-up

Weaknesses
- Incurable disease
- Adherence
- Triggers
- Inhaler technique
- Guideline implementation

Threats
- Missed diagnosis
- Side-effect concerns
- Respiratory viruses
- Medication cost
- Inconsistent follow-up

Breathing Well
Red Flags for Missed Diagnosis

- No response to standard asthma therapy
- Chronic productive cough
- Poor weight gain and growth
- Recurrent pneumonia
- Chronic sinusitis
- Sudden onset

Expert Opinion.

Normal and Abnormal Flow-Volume Loop

Normal flow-volume loop

Inspiratory flow-volume loop limitation as seen in vocal cord dysfunction

Vocal Cord Dysfunction

- Poor response to standard asthma therapy
- Acute onset and resolution
- Symptoms disappear during sleep
- Patients often point to throat when asked to locate tightness

Hilar Adenopathy From *Mycobacterium Avium*
Ciliary Dyskinesia

Bronchiectasis
Aberrant Right Subclavian Artery

Foreign Body
Foreign Body

Side Effects of ICSs

- **Local**
 - Oral candidiasis
 - Higher risk with high-dose ICSs
 - Preventable with mouth rinsing immediately after dose

- **Systemic**
 - Growth suppression
 - Effect on final adult height likely negligible
 (1 cm to 0.7% total height)
 - Adrenal suppression
 - Children on moderate- to high-dose ICSs at highest risk

Clinical Pearl: Asthma control should be periodically evaluated to determine if dose can be reduced

Clinical Pearl: Exacerbations

- No data supporting increase of inhaled steroids to treat asthma exacerbations
- Increasing inhaled steroids may be associated with diminished linear growth

Medication Costs

- Asthma medications are expensive
 - Combination ICS/LABA: $400-$600/month
- Inconsistent drug coverage between insurance plans
- High drug copays

Reducing Inconsistent Follow-Up

- Partner with parents
- Pay attention to parents' concerns
- Explore barriers to consistent follow-up
 - Health literacy (12% of adults are proficient)
 - Transportation
 - Taking time off work
 - Not understanding why follow-up needed
 - Benefits and goals of therapy not clear
- Population management
 - Patient registry to proactively manage patients

Expert Opinion.

When to Refer to a Pulmonary Specialist

- Need for ≥ step 4 level therapy
- Not responding to standard asthma therapy
- Atypical presentation and diagnosis not clear
- High-risk patients
 - History of hospital admissions
- Need for parent and patient education
The Control-Based Asthma Management Cycle

Strengths
- Guidelines
- Improved outcomes
- Research
- New drug therapies

Opportunities
- Environmental control
- Evaluation tools
- School nurses
- Consistent follow-up

Weaknesses
- Incurable disease
- Adherence
- Triggers
- Inhaler technique
- Guideline implementation

Threats
- Missed diagnosis
- Side-effect concerns
- Respiratory viruses
- Medication cost
- Inconsistent follow-up

Breathing Well
Take-Home Messages

- Proactively manage difficult-to-control asthma with recurring assessments, treatment adjustments, and review of response
- If patients don’t respond to therapies, systematically explore for barriers, triggers, adherence, and consider different diagnosis
- Newer therapeutics are targeted to specific asthma phenotypes
- Acknowledge patient’s difficulty accepting the chronic illness

Questions?
Thank You

Please complete the postassessment and evaluation located in your meeting handout.